Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Biochem Parasitol ; 258: 111618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588892

RESUMEN

Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.


Asunto(s)
Aciltransferasas , Tejido Adiposo , Acido Graso Sintasa Tipo I , Leucocitos Mononucleares , Lipasa , Trypanosoma cruzi , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Tejido Adiposo/parasitología , Tejido Adiposo/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética , Lipasa/genética , Lipasa/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Carga de Parásitos , Expresión Génica , Células Cultivadas
2.
Cytokine ; 179: 156621, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38648682

RESUMEN

Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.

3.
Front Immunol ; 15: 1280877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533504

RESUMEN

Background/Introduction: Adipose tissue (AT) has been highlighted as a promising reservoir of infection for viruses, bacteria and parasites. Among them is Trypanosoma cruzi, which causes Chagas disease. The recommended treatment for the disease in Brazil is Benznidazole (BZ). However, its efficacy may vary according to the stage of the disease, geographical origin, age, immune background of the host and sensitivity of the strains to the drug. In this context, AT may act as an ally for the parasite survival and persistence in the host and a barrier for BZ action. Therefore, we investigated the immunomodulation of T. cruzi-infected human AT in the presence of peripheral blood mononuclear cells (PBMC) where BZ treatment was added. Methods: We performed indirect cultivation between T. cruzi-infected adipocytes, PBMC and the addition of BZ. After 72h of treatment, the supernatant was collected for cytokine, chemokine and adipokine assay. Infected adipocytes were removed to quantify T. cruzi DNA, and PBMC were removed for immunophenotyping. Results: Our findings showed elevated secretion of interleukin (IL)-6, IL-2 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in the AT+PBMC condition compared to the other controls. In contrast, there was a decrease in tumor necrosis factor (TNF) and IL-8/CXCL-8 in the groups with AT. We also found high adipsin secretion in PBMC+AT+T compared to the treated condition (PBMC+AT+T+BZ). Likewise, the expression of CD80+ and HLA-DR+ in CD14+ cells decreased in the presence of T. cruzi. Discussion: Thus, our findings indicate that AT promotes up-regulation of inflammatory products such as IL-6, IL-2, and MCP-1/CCL2. However, adipogenic inducers may have triggered the downregulation of TNF and IL-8/CXCL8 through the peroxisome proliferator agonist gamma (PPAR-g) or receptor expression. On the other hand, the administration of BZ only managed to reduce inflammation in the microenvironment by decreasing adipsin in the infected culture conditions. Therefore, given the findings, we can see that AT is an ally of the parasite in evading the host's immune response and the pharmacological action of BZ.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Trypanosoma cruzi , Humanos , Interleucina-8 , Leucocitos Mononucleares , Factor D del Complemento , Interleucina-2/uso terapéutico , Tejido Adiposo , Adipocitos , Factor de Necrosis Tumoral alfa/uso terapéutico , Inmunidad , Insuficiencia del Tratamiento
4.
Mem Inst Oswaldo Cruz ; 118: e220295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878830

RESUMEN

BACKGROUND: Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE: To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS: The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS: We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION: Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Humanos , Interleucina-6 , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Tejido Adiposo , Adipocitos , Diferenciación Celular , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
5.
Exp Parasitol ; 247: 108478, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731642

RESUMEN

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), affects millions of people worldwide. Polymerase Chain Reaction (PCR) and real-time quantitative PCR (qPCR) have been used as tools to monitor parasitic levels in the bloodstream of individuals exposed to infection, thus enabling the monitoring of relapses and the effectiveness of therapy, for example. The aim of this study was to evaluate the TcSAT-IAM system, developed by our research group, on samples from patients with suspected Chagas disease infection. Initially, primer systems were developed for the detection of the nuclear DNA (SAT-DNA) from T. cruzi (TcSAT-IAM). The Cruzi system, predicted in the literature, and TcSAT-IAM were then evaluated in relation to their analytical sensitivity, specificity and efficiency. Afterwards, the applicability of the qPCR technique using both systems (separately) for the diagnosis of acute CD was evaluated in samples from 77 individuals exposed to the outbreak that occurred in Pernambuco-Brazil, relating the results obtained to those of the classical diagnostic methods recommended for this stage of the infection. TcSAT-IAM and Cruzi had a detection limit of 1 fg of target DNA (0,003 parasites). Thirty-eight cases were recorded, 28 by laboratory criteria and 10 by clinical and epidemiological criteria. Blood samples from 77 subjects were submitted to qPCR by both systems, reaching an agreement of 89.61% between them. After analyzes between systems and diagnostic criteria, the TcSAT-IAM showed sensitivity and specificity of 52.36% (CI 37.26-67.52) and 92.31% (CI 79.68-97.35), respectively, accuracy of 72.73% and moderate agreement. The TcSAT-IAM showed an accuracy of 72.58% and 75% in relation to parasitological and serological tests (IgM anti-T. cruzi), respectively. Therefore, quantitative PCR should be incorporated into the diagnosis of suspected acute cases of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Brasil/epidemiología , Patología Molecular , ADN Protozoario/genética , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/tratamiento farmacológico , Trypanosoma cruzi/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Brotes de Enfermedades
6.
Nat Prod Res ; : 1-7, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36661179

RESUMEN

Due to the limitations of Chagas disease therapy, microalgae can be promising in the search of new trypanocidal compounds, since these organisms produce bioactive compounds with large pharmaceutical applications, including antiparasitic effects. In this work, trypanocidal activity of aqueous extract of Tetradesmus obliquus and, for the first time, aqueous extract of Chlorella vulgaris, were evaluated against trypomastigote forms of Trypanosoma cruzi. In addition, cytotoxic activity in Vero cells was evaluated. Our results showed that C. vulgaris and T. obliquus present trypanocidal activity (IC50 = 32.9 µg ml-1 and 36.4 µg ml-1, respectively), however, C. vulgaris did not present cytotoxic effects in Vero cells (CC50 > 600 µg ml-1) and displayed a higher selectivity against trypomastigotes forms of T. cruzi (SI > 18). Thus, microalgae extracts, such as aqueous extract of C. vulgaris, are promising potential candidates for the development of natural antichagasic drugs.

7.
Mem. Inst. Oswaldo Cruz ; 118: e220295, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1521239

RESUMEN

BACKGROUND Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.

8.
Immunobiology ; 227(1): 152166, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936965

RESUMEN

Soluble TNF receptors (sTNFR1 and sTNFR2) are natural endogenous inhibitors of TNF and are elevated in inflammatory, autoimmune, and chronic degenerative diseases. In Chagas disease, pleiotropic cytokine TNF is considered key in immunopathology. Thus, we aimed to evaluate the levels of TNF, sTNFR1, and sTNFR2 in the serum of patients with chronic Chagas disease. TNF and its soluble receptors were quantified using Cytometric Bead Array in the serum of 132 patients, of which 51 had the indeterminate form (IND), 39 the mild cardiac form (CARD 1), 42 the severe cardiac form (CARD 2), and 20 non-infected individuals (NI). The results indicate that the soluble receptors may regulate TNF in Chagas disease, as their leves were higher in T. cruzi-infected individuals when compared to non-infected individuals. We found a moderate negative correlation between sTNFR1 and TNF in individuals with the IND form, suggesting a relationship with non-progression to more severe forms, such as heart disease. sTNFR1 and sTNFR2 were increased in all clinical forms, but with a moderate positive correlation in more severe patients (r = 0.50 and p = 0.0005). TNF levels showed no statistical differences in the groups of patients. These findings suggest the importance of the endogenous balance of the levels of soluble TNF receptors in the protection and balance in patients with chronic Chagas disease, besides revealing the immunological complexity in chronic T. cruzi-infected individuals.


Asunto(s)
Enfermedad de Chagas , Enfermedad Crónica , Citocinas , Humanos , Receptores del Factor de Necrosis Tumoral
9.
Antibiotics (Basel) ; 9(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823803

RESUMEN

Trypanosoma cruzi causes the lethal Chagas disease, which is endemic in Latin America. Flowers of Moringa oleifera (Moringaceae) express a trypsin inhibitor (MoFTI) whose toxicity to T. cruzi trypomastigotes was previously reported. Here, we studied the effects of MoFTI on the viability of human peripheral blood mononuclear cells (PBMCs) as well as on the production of cytokines and nitric oxide (NO) by T. cruzi-infected PBMCs. Incubation with MoFTI (trypsin inhibitory activity: 62 U/mg) led to lysis of trypomastigotes (LC50 of 43.5 µg/mL) but did not affect the viability of PBMCs when tested at concentrations up to 500 µg/mL. A selectivity index > 11.48 was determined. When T. cruzi-infected PBMCs were treated with MoFTI (43.5 or 87.0 µg/mL), the release of the pro-inflammatory cytokine TNF-α and INF-γ, as well as of NO, was stimulated. The release of the anti-inflammatory cytokine IL-10 also increased. In conclusion, the toxicity to T. cruzi and the production of IL-10 by infected PBMCs treated with MoFTI suggest that this molecule may be able to control parasitemia while regulating the inflammation, preventing the progress of Chagas disease. The data reported here stimulate future investigations concerning the in vivo effects of MoFTI on immune response in Chagas disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...